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Robust Adaptive Control of a Cantilevered Flexible Structure

with Spatiotemporally Varying Coefficients and

Bounded Disturbance∗

Kyung-Jinn YANG∗∗, Keum-Shik HONG∗∗∗ and Fumitoshi MATSUNO∗∗

In this paper, a robust model reference adaptive control of a cantilevered flexible struc-
ture with unknown spatiotemporally varying coefficients and disturbance is investigated. Any
mechanically flexible manipulators/structures are inherently distributed parameter systems
whose dynamics are described by partial, rather than ordinary, differential equations. Robust
adaptive control laws are derived by the Lyapunov redesign method on an infinite dimen-
sional Hilbert space. Under the assumption that disturbances are uniformly bounded, the
proposed robust adaptive scheme guarantees the boundedness of all signals in the closed loop
system and the convergence of the state error near to zero. With an additional persistence of
excitation condition, the parameter estimation errors are shown to converge near to zero as
well.
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1. Introduction

Almost every engineering system will exhibit some
distributed parameter behavior if one looks at its dynam-
ics in great detail. Consequently, the dynamical behavior
of such a distributed parameter system (DPS) would need
to be modeled by partial, rather than ordinary, differential
equations (PDEs) to be correctly represented. Of course,
in many cases, such detail is not necessary for the success-
ful operation of the system, and a lumped parameter (or-
dinary differential equation, ODE) model is satisfactory.
Nevertheless, a large number of current and newly pro-
posed systems, such as industrial processes and mechan-
ically flexible robot manipulators and flexible spacescraft
and satellites, are so thoroughly distributed parameter in
nature that it is impossible to ignore this in modeling and
control(1) – (4).

Such DPSs are described by operator equations on an
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infinite dimensional Hilbert (or Banach) space. The anal-
ysis of DPSs then makes use of the theory of semigroup
on an infinite dimensional state space. The infinite dimen-
sional approach will yield results that can be used effec-
tively in large-scale finite dimensional systems as well.
One very important consideration in large-scale or dis-
tributed parameter systems is to avoid the dependence on
precise knowledge of the total system dimension and the
full system parameters, especially those residual param-
eters that are not used in the synthesis of the controller.
This infinite dimensional approach can eliminate the un-
certainty on system dimension and the spillover problems
on residual data.

The mathematical models of physical plants that con-
trol engineers formulate to design a control system nor-
mally contain some uncertainty. This is due to imperfect
knowledge on the system parameters and/or disturbances.
The unstructured uncertainty is due to unmodeled dynam-
ics, for instance, neglected frictions, neglected high order
dynamics, etc., and may also arise from linear approxi-
mations along different motions over a wide range of op-
erating conditions. In flexible systems, not only the ge-
ometry of the structure but also physical properties such
as the density, stiffness, Poisson ratio, and damping co-
efficients may change. Indeed, many of these spatiotem-
porally varying parameters are unknown even if the ma-
terial itself is homogeneous and the structure is uniform.
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Thus, the control problem of flexible structures provides
challenging issues including parameter estimation, uncer-
tainty quantification, and robustness. Compared to the fi-
nite dimensional case, the adaptive control of infinite di-
mensional systems is not well developed and has only re-
cently been studied(5) – (10).

In this paper, a robust model reference adaptive con-
trol (MRAC) of a cantilevered flexible beam with un-
known spatiotemporally varying coefficients and distur-
bance is developed. The objective of an MRAC scheme is
to determine a feedback control law which forces the state
of the plant to asymptotically track the state of a given ref-
erence model. At the same time, the unknown parameters
in the plant model are estimated and used to update the
control law.

Possible applications of the robust MRAC scheme
considered in this paper are shape control, tracking con-
trol, and vibration control of various flexible structures,
e.g., very long arms needed for accessing hostile environ-
ments (nuclear sites, underground waste deposits, deep
sea, space, etc.) or automated crane devices for building
construction. Shape control involves activating the struc-
ture in order to achieve a certain desired shape specified
by the user. Applications range from controlling the shape
of flexible arms such as a micro manipulator(11) to large
flexible space structures(12) that smart actuators integrated
within the structure produce small in-plane deflections that
can in turn produce large out-of-plane deformations. Such
smart structures incorporating adaptive materials, which
can then be used as distributed actuators or sensors, into
the main host structure are receiving much attention as
an advanced control technology(13). Studies on the shape
control using distributed actuators/sensors include Chee et
al.(14) for plates, and Chandrashekhara and Varadarajan(15)

for beams.
The present paper makes the following contributions:

A cantilevered flexible beam in the frame of robust MRAC
is treated in this paper. To the authors’ best knowledge
this paper is the first treatment of an infinite dimensional
system with unknown spatiotemporally varying parame-
ters and additive unknown spatiotemporally varying dis-
turbance in the frame of robust MRAC. The unknown
time-varying parameters are not required to be slow, which
can be allowed to vary arbitrarily fast. The well-posedness
of the closed loop system is established via the theory of
infinite dimensional evolution equations. Using an appro-
priate Lyapunov function, the asymptotic convergence of
the tracking error near to zero is established. With an ad-
ditional assumption of persistence of excitation, the con-
vergence of parameter estimation errors near to zero is es-
tablished as well.

The rest of this article is organized as follows: In sec-
tion 2, the dynamic equations (PDEs) of the cantilevered
flexible beam and the reference model are formulated. The

control law and the adaptation laws are also presented; the
well-posedness of the coupled nonlinear system consist-
ing of the state error equation and the adaptation laws is
shown in section 3; the convergence of the tracking and
parameter estimation errors near to zero is presented in
section 4, followed by the conclusions in section 5.

2. Problem Formulation: Robust MRAC

In this paper, as shown schematically in Fig. 1, a can-
tilevered flexible beam of length l fixed at x = 0 and free
at x = l, with viscous damping, is considered. In many
cases, such a simple model retains the essential features
of more complicated flexible robots/structures including
micro-electro-mechanical systems (MEMS). Neglecting
the effect of gravity and rotatory inertia of the beam cross-
sections and using the Euler-Bernoulli beam model, the
following equations of motion for the one dimensional
Euler-Bernoulli beam with spatiotemporally varying co-
efficients and disturbance(16) is derived:

ρ(x, t)utt(x, t)

+
∂2

∂x2

[
EI(x, t)

(
∂2u(x, t)
∂x2

+αc(x, t)
∂3u(x, t)
∂x2∂t

)]

= f (x, t)+d0(x, t),

0< x< l, t>0,

u(0, t)=
∂u(x, t)
∂x

∣∣∣∣∣∣
x=0

=0,

EI

(
∂2u(x, t)
∂x2

+αc
∂3u(x, t)
∂x2∂t

) ∣∣∣∣∣∣
x=l

=
∂

∂x

[
EI

(
∂2u(x, t)
∂x2

+αc
∂3u(x, t)
∂x2∂t

)] ∣∣∣∣∣∣
x=l

=0,

u(x,0)=u0(x), ut(x,0)=ut0(x) (1)

where u(x, t) is the transverse-displacement (and also is
the observed distributed state), ρ(x, t) is the mass per unit
length, EI(x, t) is the flexural stiffness, αc(x, t) is the stiff-
ness proportionality factor defined for Rayleigh damping
and denotes the internal resistance opposing the strain ve-
locity, f (x, t) is the control input force, d0(x, t) is the in-
accessible external disturbance, and u0(x) and ut0(x) are
the initial conditions, ut = ∂u/∂t and utt = ∂

2u/∂t2. The

Fig. 1 Flexible beam deflected due to loadings.
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boundary conditions indicate that the beam is fixed at
x = 0 and free at x = l. Assume the physical constraints
0 < ϑ1 ≤ ρ(x, t) ≤ ϑ2, ϑ1 ≤ EI(x, t), and ϑ1 ≤ αcEI(x, t) for
all x ∈ [0, l] and t ≥ 0 with a priori known constants ϑi,
i= 1, 2. Note that d0(x, t) is an unknown spatiotemporally
varying function but uniformly bounded.

A typical problem related to this model would be to
control the system while the coefficients are unknown, i.e.,
ρ(x), EI(x), and αcEI(x) are unknown, which may vary
arbitrarily with position x along the span l. That is, the
parameters may be piecewise values due to the presence
and differing material properties of the bonding layer and
patches of distributed actuators and sensors. It is then
forced to differentiate discontinuous functions when con-
sidering the strong form of plant equation (1). To avoid
the difficulty as well as lower smoothness requirements
for approximating elements, the system (1) in weak form
is considered.

To convert (1) into the weak form, both sides of (1)
are multiplied by a sufficiently smooth test function ϕ

and are integrated by parts. Assuming that ϕ satisfies
the boundary conditions ϕ(x) = ∂ϕ(x)/∂x = 0 at x = 0 and
ϕ∈C∞(0, l), the weak form of (1) is∫

Γ

(
ρ(x, t)utt(x, t)

+
∂2

∂x2

(
EI(x, t)

∂2u(x, t)
∂x2

+αcEI(x, t)
∂3u(x, t)
∂x2∂t

)

− f (x, t)−d0(x, t)

)
ϕ(x) dx=0 (2)

where Γ = [0, l]. The integration of the second and third
terms by part twice yields:∫

Γ

ρ(x)utt(x, t)ϕ(x) dx+
∫
Γ

EI(x, t)
∂2u(x, t)
∂x2

∂2ϕ(x)
∂x2

dx

+

∫
Γ

αcEI(x, t)
∂3u(x, t)
∂x2∂t

∂2ϕ(x)
∂x2

dx

−
∫
Γ

( f (x, t)+d0(x, t))ϕ(x) dx

+

[
∂

∂x

(
EI(x, t)

∂2u(x, t)
∂x2

)
ϕ(x)

−EI(x, t)
∂2u(x, t)
∂x2

∂ϕ(x)
∂x

]l

0

+

[
∂

∂x

(
αcEI(x, t)

∂3u(x, t)
∂x2∂t

)
ϕ(x)

−αcEI(x, t)
∂3u(x, t)
∂x2∂t

∂ϕ(x)
∂x

]l

0

=0. (3)

Now using the boundary conditions, the following weak
form is derived:∫

Γ

ρ(x, t)utt(x, t)ϕ(x) dx+
∫
Γ

EI(x, t)
∂2u(x, t)
∂x2

∂2ϕ(x)
∂x2

dx

+

∫
Γ

αcEI(x, t)
∂3u(x, t)
∂x2∂t

∂2ϕ(x)
∂x2

dx

=

∫
Γ

f (x, t)ϕ(x) dx+
∫
Γ

d0(x, t)ϕ(x) dx. (4)

Then, (4) can be rewritten as∫
Γ

utt(x, t)ϕ(x) dx+
∫
Γ

q1(x, t)
∂2u(x, t)
∂x2

∂2ϕ(x)
∂x2

dx

+

∫
Γ

q2(x, t)
∂3u(x, t)
∂x2∂t

∂2ϕ(x)
∂x2

dx

=

∫
Γ

q3(x, t) f (x, t)ϕ(x) dx+
∫
Γ

d(x, t)ϕ(x) dx, (5)

where q1(x, t), q2(x, t), q3(x, t), and d(x, t) denote
ρ−1(x, t)EI(x, t), ρ−1(x, t)αcEI(x, t), ρ−1(x, t), and
ρ−1(x, t)d0(x, t), respectively(9), (17). The coefficients
qi, i = 1, 2, 3, are unknown. It is pointed out that in the
weak form some derivatives have been transferred from
the beam moments to the test function. In this paper it is
assumed that the system state u(x, t) can be measured at
all points of x∈Γ and t≥0.

To pose the MRAC problem, adequate function
spaces are now introduced. Let H and V be the Hilbert
spaces given by H = L2(Γ) and H =H2

L(Γ), which are de-
fined as follows:

L2(Γ)=

{
η:[0, l]→R

∣∣∣∣
∫
Γ

η2 dx<∞
}
,

H2
L(Γ)=

{
η∈L2(Γ)

∣∣∣∣ ∂η
∂x
,
∂2η

∂x2
∈L2(Γ),

and η(x)=
∂η(x)
∂x
=0 at x=0

}
, (6)

where the subscript L indicates that only left side is sup-
ported. The inner products in H and V are defined, respec-
tively, as

〈ψ(x),ϕ(x)〉H =
∫
Γ

ψ(x)ϕ(x) dx, (7)

〈ψ(x),ϕ(x)〉V =
∫
Γ

q∗1(x)
∂2ψ(x)
∂x2

∂2ϕ(x)
∂x2

dx, (8)

where q∗1(x) > 0 is a reference model parameter and is
specified in (13), and the corresponding induced norms are
denoted by ‖ · ‖ and ‖ · ‖V , respectively. Since V is densely
and continuously embedded in H, the Hilbert spaces H
and V form a Gelfand triple(18)

V �→H�H∗ �→V, (9)

where H∗ and V∗ denote the topological dual spaces of H
and V , respectively, and denote embedding. As usual, the
Hilbert space H∗ is identified by H. Since the embeddings
in (9) are dense and continuous, the following is then sat-
isfied:

‖ψ‖≤K‖ψ‖V , ψ∈V, (10)

for some positive (embedding) constant K. Let qi ∈Q, i=
1, 2, 3, where Q is a compact subset of L2(Γ) and is a real
Hilbert space (henceforth the parameter space) with inner
product 〈·, ·〉Q, and corresponding norm ‖ · ‖Q. Note that
the parameter space Q is appropriately chosen according
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to the bonding layer and patches of distributed actuators
and sensors(19).

For q∈Q and ψ, ϕ∈V sesquilinear formsσi(q; ·, ·):V×
V→R, i=1, 2, are defined on V as

σi(q;ψ,ϕ)=
∫
Γ

q(x)
∂2ψ(x)
∂x2

∂2ϕ(x)
∂x2

dx, (11)

where q(x) > 0. The sesquilinear forms σi(q; ·, ·), i = 1,
2, satisfy various continuity, symmetricity, coercivity, and
linearity conditions, i.e.,

(A1) |σi(q;ψ,ϕ)| ≤ k1(q)‖ψ‖V‖ϕ‖V ,
for some k1(q)>0

(boundedness),
(A2) σi(q;ψ,ψ)≥ k2(q)‖ψ‖2V , for some k2(q)>0

(coercivity),
(A3) σi(q;ψ,ϕ)=σi(q;ϕ,ψ) (symmetricity),
(A4) The map q→σi(q;ψ,ϕ) from Q into R is linear

(linearity),
for ϕ, ψ ∈ V . While the symmetricity (A3) and linearity
(A4) follow directly from (11), the boundedness (A1) re-
sults from the Schwarz’s inequality for inner products and
the coercivity (A2) follows from the fact that there exists
a k2(q)>0 such that

σi(q;ψ,ψ)=
∫
Γ

q(x)

(
∂2ψ(x)
∂x2

)2

dx

≥ k2(q)
∫
Γ

q∗1(x)

(
∂2ψ(x)
∂x2

)2

dx= k2(q)‖ψ‖2V ,
for i=1, 2 and ψ∈V .

With these definitions, (5) with (1) can be rewritten
as

〈utt,ϕ〉+σ1(q1;u,ϕ)+σ2(q2;ut,ϕ)= 〈q3 f ,ϕ〉+ 〈d,ϕ〉,
0< x< l, t>0,

u(0, t)=
∂u(x, t)
∂x

∣∣∣∣∣∣
x=0

=0,

u(x,0)=u0(x), ut(x,0)=ut0(x), (12)

where u0(x) ∈V , ut0(x) ∈H, and the notation 〈·, ·〉 denotes
the usual duality product obtained as the extension by con-
tinuity of the H-inner product from H×V to V∗×V (18). The
control input force f (x, t) and the disturbance d(x, t) are as-
sumed to satisfy f , d ∈ L2(0,T ;V∗) for all T >0. Note that
‖d(x, t)‖ is assumed to be uniformly bounded by µd(t), i.e.,
µd(t)≥‖d(x, t)‖, where µd(t) is a time-varying function that
is unknown.

The robust MRAC problem for plant (12), in the pres-
ence of unknown parameters qi, i= 1, 2, 3, and d, is now
to find the control input f in feedback form that forces the
state u to track a reference signal v. The reference signal v
is generated through a reference model defined by

〈vtt,ϕ〉+σ1(q∗1;v,ϕ)+σ2(q∗2;vt,ϕ)= 〈q∗3g,ϕ〉,
0< x< l, t>0,

v(0, t)=
∂v(x, t)
∂x

∣∣∣∣∣∣
x=0

=0,

v(x,0)= v0(x), vt(x,0)= vt0(x), (13)

for ϕ ∈ V , where v0(x) ∈ V , vt0(x) ∈H, and 0< q∗i0 ≤ q∗i (x),
i = 1, 2, 3, with constants q∗i0’s. The reference model pa-
rameters q∗i ’s are sufficiently smooth and chosen so that
the response (v,vt) can have the desired characteristics,
and the input reference signal g(x, t) is assumed to satisfy
g∈L2(0,T ;V∗) for all T >0.

Let us define the state error e as

e(t, x)=u(t, x)−v(t, x). (14)

The control objective for MRAC is to find a bounded con-
trol law, f , which drives u to v and ut to vt, asymptotically.
More precisely, f is chosen to achieve

lim
t→∞‖et‖= lim

t→∞‖e‖V ≈0 (15)

with all the signals in the closed loop bounded.
Consider the nominal control input, f ∗, as follows:

〈 f ∗,ϕ〉=σ1(θ∗1;u,ϕ)+σ2(θ∗2;ut,ϕ)+ 〈θ∗3g,ϕ〉, (16)

where θ∗1 =q−1
3 (q1−q∗1), θ∗2=q−1

3 (q2−q∗2), and θ∗3=q−1
3 q∗3. If

the disturbance d(x, t) = 0, then, by substituting the nom-
inal control input into (12), it is seen that (12) coincides
with (13), i.e., the plant equation and the reference model
equation become identical. But, because qi, i=1, 2, 3, are
unknown, the values of θ∗i in (16) are not known. Hence, in
the case of the plant (12) including unknown time-varying
coefficients and disturbance, a novel adaptive control law
should be introduced. The main idea about the control
law is to consider the worst case of the uncertainties in the
form of possible bounds. Based upon the worst case, the
following control algorithm is proposed.

f =
∂2

∂x2

(
θ̂1(t)

∂2u(x, t)
∂x2

+ θ̂2(t)
∂3u(x, t)
∂x2∂t

)

+ (θ̂3(t)g−µ0et−µe+ fc),

or

〈 f ,ϕ〉=σ1(θ̂1(t);u,ϕ)+σ2(θ̂2(t);ut,ϕ)+ 〈θ̂3(t)g,ϕ〉
−〈µ0et,ϕ〉−〈µe,ϕ〉+ 〈 fc,ϕ〉, (17)

for each t > 0, where µ0 > 1 and µ > 0 are introduced to
guarantee the convergence of the state error, see section 3,
and θ̂i(t) ∈ Q, i = 1, 2, 3, denote adaptively updated es-
timates for θ∗i , respectively. The additional term fc(x, t)
is regarded as a new input signal to be determined based
on robust control strategy. The additional input fc(x, t) is
given by

fc(x, t)=− µ̂2
d(t)

µ̂d(t)‖e(x, t)+et(x, t)‖+εd
(e(x, t)+et(x, t)),

(18)

where εd >0 and µ̂d(t) is the estimate of µd(t).
The adaptation laws are given by

˙̂θ1 =−δ1θ̂1−σ1(γ1q3;e+v,e+et)+γ1g1,

θ̂1(0)= θ̂10,
(19.a)
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˙̂θ2=−δ2θ̂2−σ2(γ2q3;et+vt,e+et)+γ2g2,

θ̂2(0)= θ̂20,
(19.b)

˙̂θ3=−δ3θ̂3−〈γ3q3g,e+et〉+γ3g3, θ̂3(0)= θ̂30,

(19.c)

˙̂µd =−2δdµ̂d+γd‖e+et‖+γdgd, µ̂d(0)= µ̂d0,

(19.d)

where for i=1, 2, 3, δi, γi>0

gi=−
ξ2

i

‖θ̂i‖Qξi+εi

θ̂i, εi >0, ξi≥‖ fi‖Q,

fi
∆
=− δi

γi

(
θi+

θ̇i

δi

)
,

(20)

and δd >0, γd >0,

gd =−
ξ2

d

|µ̂d |ξd+εd
µ̂d, εd >0, ξd ≥ | fd |,

fd
∆
=− δd

γd

(
µd+

µ̇d

δd

)
.

(21)

The terms −δiθ̂i and −δdµ̂d in (19.a – d) are purposely in-
serted to enhance the convergence of θi and µd, respec-
tively; gi and gd are introduced to cope with the variations
of θi and µd, respectively. Since θi, θ̇i, µd, and µ̇d are as-
sumed to be bounded, ξi and ξd can be selected at rea-
sonable values by making γi and γd sufficiently large. It
is also noted that the control magnitudes ξi and ξd are to
compensate the maximum possible bounds of fi and fd,
respectively, for both positive and negative cases.

Although adaptation laws (19.a – d) contain the un-
known parameter q3, this is not a problem at all because
γiq3, i= 1, 2, 3, are treated as adaptation gains. Thus, the
adaptation laws (19.a – d) can be rewritten as

˙̂θ1=−δ1θ̂1−σ1(γ01;e+v,e+et)+γ01g1, θ̂1(0)= θ̂10,

(22.a)
˙̂θ2=−δ2θ̂2−σ2(γ02;et+vt,e+et)+γ02g2, θ̂2(0)= θ̂20,

(22.b)
˙̂θ3=−δ3θ̂3−〈γ03g,e+et〉+γ03g3, θ̂3(0)= θ̂30,

(22.c)

˙̂µd =−2δdµ̂d+γd‖e+et‖+γdgd, µ̂d(0)= µ̂d0,

(22.d)

where γ0i=γiq3>0, i=1, 2, 3.
The substitution of (17) into (12) yields the closed

loop plant equation as

〈utt,ϕ〉−σ1(q3θ̃1;u,ϕ)+σ1(q∗1;u,ϕ)

−σ2(q3θ̃2;ut,ϕ)+σ2(q∗2;ut,ϕ)

= 〈q3θ̃3g,ϕ〉+ 〈q∗3g,ϕ〉−〈µ0et,ϕ〉−〈µe,ϕ〉
+ 〈 fc,ϕ〉+ 〈d,ϕ〉, (23)

where θ̃i(t) = θ̂i(t)− θ∗i , i = 1, 2, 3, are the controller pa-
rameter estimation errors. In deriving (23), qi − q3θ̂i =

q3q−1
3 (qi−q∗i )+q∗i −q3θ̂i = q∗i −q3(θ̂i−θ∗i )= q∗i −q3θ̃, i= 1,

2, and q3θ̂3=q3θ̃3+q3θ
∗
3 have been used.

From (14), the following state error equation is ob-
tained from (13) and (23).

〈ett,ϕ〉−σ1(q3θ̃1;e,ϕ)−σ1(q3θ̃1;v,ϕ)+σ1(q∗1;e,ϕ)

−σ2(q3θ̃2;et,ϕ)−σ2(q3θ̃2;vt,ϕ)+σ2(q∗2;et,ϕ)

= 〈q3θ̃3g,ϕ〉−〈µ0et,ϕ〉−〈µe,ϕ〉+ 〈 fc,ϕ〉+ 〈d,ϕ〉,
e(t,0)=

∂e(t,0)
∂x

=0,

e(0, x)= e0(x), et(0, x)= et0(x), (24)

where e0(x) ∈ V and et0(x) ∈ H. Using (24), it will be
shown that the closed loop system (23), i.e., the plant (12)
with the control law (17) and the adaptation laws (22.a –
d), will track the state of the reference model (13) in the
sense that (15) is satisfied. The well-posedness of the cou-
pled nonlinear system (23) and (22.a – d) is firstly stated.

3. Well-Posedness of Coupled Nonlinear System

For q∈Q and ψ, ϕ∈V , let Ai(q)∈L(V,V∗), i=1, 2, be
differential operators such that

Ai(q)
∆
=
∂2

∂x2

(
q
∂2

∂x2

)
, (25.a)

〈Ai(q)ψ,ϕ〉V∗ ,V =σi(q;ψ,ϕ), (25.b)

and D(Ai)= {ψ∈V : Aiψ∈H}, where L(V,V∗) denotes the
set of continuous linear functions from V to V∗. The exis-
tence of Ai, i= 1, 2, is guaranteed by the boundedness of
σi, i = 1, 2. Using the operators Ai(q), i = 1, 2, the state
error equation (24) can be rewritten as

〈ett,ϕ〉=−〈A1(q∗1)e,ϕ〉−〈A2(q∗2)et,ϕ〉+ 〈 f0(t,e, θ̂i),ϕ〉,
(26)

where f0(t,e, θ̂i) = A1(q3(θ̂1 − θ∗1))e + A2(q3(θ̂2 − θ∗2))et +

q3(θ̂3−θ∗3)g+A1(q3(θ̂1−θ∗1))v+A2(q3(θ̂2−θ∗2))vt−µ0et−µe+
fc+d.

Let {X,〈·, ·〉X} be the Hilbert space defined by X=V×
H and

〈ψ0,ϕ0〉X = 〈ψ1,ϕ1〉V + 〈ψ2,ϕ2〉H (27)

for ψ0 = (ψ1,ψ2) ∈ X and ϕ0 = (ϕ1,ϕ2) ∈ X. And, let
{Y,〈·, ·〉Y } be the Hilbert space defined by Y =V×V and

〈ψ0,ϕ0〉Y = 〈ψ1,ϕ1〉V + 〈ψ2,ϕ2〉V (28)

for ψ0 = (ψ1,ψ2)∈Y and ϕ0 = (ϕ1,ϕ2)∈Y , and Y �→X �→Y∗

with the embedding dense and continuous. The following
is then satisfied:

‖ψ0‖X ≤K0‖ψ0‖Y (29)

for ψ0 ∈Y and K0 >0.
From (26), the state error system can be rewritten in

the first order form as

〈et,ϕ0〉Y∗,Y = 〈A0e,ϕ0〉Y∗,Y + 〈 f ,ϕ0〉Y∗,Y , e(0)= e0,

(30)
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where e= (e,et)T , ϕ0 = (ϕ1,ϕ2)T , f = (0, f0)T , and

A0 =

[
0 1

−A1(q∗1) −A2(q∗2)

]
,

where A0 ∈ L(Y,Y∗) and D(A0) = {ψ0 = (ψ1,ψ2) ∈ Y :
A1(q∗1)ψ1+A2(q∗2)ψ2 ∈ H}. The nonlinear coupled system
(30) and (22.a – d) can be then given as follows:

〈et,ϕ0〉= 〈A0e,ϕ0〉+ 〈 f ,ϕ0〉, (31.a)

〈 ˙̂θ1, p〉Q =−〈δ1θ̂1, p〉Q−〈γ01(exx+vxx)(exx+etxx), p〉Q
+ 〈γ01g1, p〉Q, (31.b)

〈 ˙̂θ2, p〉Q =−〈δ2θ̂2, p〉Q−〈γ02(etxx+vtxx)(exx+etxx), p〉Q
+ 〈γ02g2, p〉Q, (31.c)

〈 ˙̂θ3, p〉Q =−〈δ3θ̂3, p〉Q−〈γ03g(e+et), p〉Q+〈γ03g3, p〉Q,
(31.d)

˙̂µdrd =−2δdµ̂drd+γd‖e+et‖rd+γdgdrd, (31.e)

e(0)= e0, θ̂1(0)= θ̂10, θ̂2(0)= θ̂20,

θ̂3(0)= θ̂30, µ̂d(0)= µ̂d0,
(31.f)

where exx=
∂2e
∂x2

, etxx=
∂3e
∂x2∂t

, and rd ∈R. From the system

(31.f), the following is obtained:

〈et,ϕ0〉+ 〈 ˙̂θ1, p〉Q+ 〈 ˙̂θ2, p〉Q+ 〈 ˙̂θ3, p〉Q+ ˙̂µdrd

= 〈A0e,ϕ0〉−〈δ1θ̂1, p〉Q−〈δ2θ̂2, p〉Q
−〈δ3θ̂3, p〉Q−2δdµ̂drd

+ 〈 f ,ϕ0〉−〈γ01(exx+vxx)(exx+etxx), p〉Q+ 〈γ01g1, p〉Q
−〈γ02(etxx+vtxx)(exx+etxx), p〉Q+ 〈γ02g2, p〉Q
−〈γ03g(e+et), p〉Q+ 〈γ03g3, p〉Q+γd‖e+et‖rd+γdgdrd.

(32)

Define a state space as W
∆
= Y ×Q3×R. The system (32)

can be then rewritten as〈 

ė
˙̂θ1
˙̂θ2
˙̂θ3
˙̂µd


,



ϕ0

p
p
p
rd



〉
W∗,W

=

〈 

A0 0 0 0 0
0 −δ1 0 0 0
0 0 −δ2 0 0
0 0 0 −δ3 0
0 0 0 0 −2δd





ė
˙̂θ1
˙̂θ2
˙̂θ3
˙̂µd


,



ϕ0

p
p
p
rd



〉
W∗ ,W

+

〈 

f
−γ01(exx+vxx)(exx+etxx)+γ01g1

−γ02(etxx+vtxx)(exx+etxx)+γ02g2

−γ03g(e+et)+γ03g3

γd‖e+et‖+γdgd


,



ϕ0

p
p
p
rd



〉
W∗ ,W

(33)

where (ϕ0, p, p, p,rd)T ∈W.

The weak form (33) is formally equivalent to the sys-
tem

ż=Az+F(t,z), z(0)= z0, (34)

where z= (e, θ̂1, θ̂2, θ̂3, µ̂d)T ∈Z, Z
∆
=X×Q3×R, and

A=



A0 0 0 0 0
0 −δ1 0 0 0
0 0 −δ2 0 0
0 0 0 −δ3 0
0 0 0 0 −2δd


,

F(t,z)=



f
−γ01(exx+vxx)(exx+etxx)+γ01g1

−γ02(etxx+vtxx)(exx+etxx)+γ02g2

−γ03g(e+et)+γ03g3

γd‖e+et‖+γdgd


,

where A:D(A)⊂Z→Z and

D(A)= {(ψ0,θ)∈Z : ψ0 ∈ (ψ1,ψ2)∈X

and A1(q∗1)ψ1+A2(q∗2)ψ2 ∈H}.
D(A) is dense, and A is a closed operator(18). Therefore,
the existence of a unique solution to the system (33) can
be established by establishing the existence of a unique
strong solution to the initial value problem in Z given by
(34).

For z∈D(A)

〈z,Az〉Z = 〈et,e〉V −〈A1(q∗1)e,et〉−〈A2(q∗2)et,et〉

−
3∑

i=1
δi‖θ̂i‖2Q−2δdµ̂

2
d

=−σ2(q∗2;et,et)−
3∑

i=1
δi‖θ̂i‖2Q−2δdµ̂

2
d

≤−k2(q∗2)‖et‖2V −
3∑

i=1
δi‖θ̂i‖2Q−2δdµ̂

2
d. (35)

Similarly, it can be shown that the dual of A0 given by

A∗0 =
[

0 −1
A1(q∗1) −A2(q∗2)

]
(36)

satisfies 〈e,A∗0e〉X ≤−k2(q∗2)‖et‖2V and so A0(t) generates a
contraction semigroup.

Hence, A:D(A)⊂Z→Z is the infinitesimal generator
of a linear process {S (t)}t≥0 = {(Φ(t,0),Θ1(t),Θ2(t),Θ3(t),
E(t))}t≥0 on Z(18). Note that the first component Φ(t,0)
is generated by A0. Note also that Φ(t,0)e0 is the strong
solution of the evolution equation ė(t) = A0e(t) for every
e0 ∈D(A0).

Now, set z = (e, θ̂1, θ̂2, θ̂3, µ̂d)T and z′ = (e′, θ̂′1, θ̂
′
2, θ̂
′
3,

µ̂d)T . Then,

‖F(t,z)−F(t,z′)‖2Z
≤

[
β2

e(‖θ̂′1‖2Q+‖θ∗1‖2+K2µ2)

+‖γ01‖2Q(‖exx‖2+‖e′xx‖2+‖etxx‖2+‖vxx‖2)

+‖γ02‖2Q(‖vtxx‖2+‖e′txx‖2)+K2‖γ03‖2Q‖g‖2
]
‖e−e′‖2V
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+

[(
K2

aβ
2
e(‖θ̂′2‖2Q+‖q∗2‖2)+µ2

0

)
+K2

a‖γ01‖2Q(‖vxx‖2+‖e′xx‖2)

+K2
a‖γ02‖2Q(‖exx‖2+‖e′txx‖2+‖etxx‖2+‖vtxx‖2)

+‖γ03‖2Q‖g‖2
]
‖et−e′t‖2

+

2
∣∣∣∣∣∣

µ̂′d
(µ̂′d‖e+et‖+εd)(µ̂′d‖e′+e′t‖+εd)

∣∣∣∣∣∣
2

|µ′d |4‖e′+e′t‖2

+γ2
dKd

+

∣∣∣∣∣∣
εd

(µ̂′d‖e+et‖+εd)(µ̂′d‖e′+e′t‖+εd)

∣∣∣∣∣∣
2

|µ′d |4


× (K2‖e−e′‖2V +‖et−e′t‖2)

+β2
a(‖exx‖2+‖vxx‖2)‖θ̂1− θ̂′1‖2Q

+β2
a(‖etxx‖2+‖vtxx‖2)‖θ̂2− θ̂′2‖2Q

+‖q3‖2Q‖g‖2‖θ̂3− θ̂′3‖2Q

+
3∑

i=1
‖γ0i‖2Q

 2ξ6
i ‖θ̂′i‖2Q+ε2

i ξ
4
i

(‖θ̂i‖Qξi+εi)(‖θ̂′i‖Qξi+εi)

‖θ̂i− θ̂′i‖2Q

+


∣∣∣∣∣∣

µ̂dµ̂
′
d‖e+et‖+εd(µ̂d+ µ̂

′
d)

(µ̂d‖e+et‖+εd)(µ̂′d‖e+et‖+εd)

∣∣∣∣∣∣
2

‖e+et‖2

+γ2
d

 2ξ6
d |µ̂′d |2+ε2

dξ
4
d

(|µ̂d |ξd+εd)(|µ̂′d |ξd+εd)


 |µ̂d− µ̂′d |2. (37)

Hence,

‖F(t,z)−F(t,z′)‖Z ≤C1‖z−z′‖Z , (38)

where C1 is a positive constant. Therefore F:Z → Z is
locally Lipschitz continuous in Z. Thus a unique solution
exists. Finally, the strong solution of (30) can be written
in the following variation of constant formula(19)

e(t)=Φ(t,0)e(0)+
∫ t

0
Φ(t,τ) f (τ,e(τ), θ̂i(τ)) dτ, (39)

where Φ(t, s) is the evolution operator associated with A0

in the space X.

4. Tracking and Parameter Errors Convergence

The closed loop boundedness of u, ut, θ̂i’s, µ̂d, and f ,
and the convergence of e and θ̃i’s are now considered. By
considering an appropriate Lyapunov function, the stabil-
ity of the closed loop system can be established. A func-
tional V:[0,∞)→R+ is now considered as

V(t)=
1
2

V1(t)+
3∑

i=1

1
2γi
〈θ̃i, θ̃i〉Q+ 1

2γd
µ̃2

d (40)

for i=1, 2, 3, and where

V1(t)= 〈(µ0+µ−1)e,e〉+ 〈et+e,et+e〉
+σ1(q∗1;e,e)+σ2(q∗2;e,e).

Differentiating (40) with respect to t along the trajectories
of (24) yields:

V̇(t)= 〈(µ0+µ−1)e,et〉+ 〈ett,et〉+ 〈et,et〉+ 〈ett,e〉+ 〈e,et〉
+σ1(q∗1;e,et)+σ2(q∗2;e,et)+

3∑
i=1

1
γi
〈 ˙̃θi, θ̃i〉Q+ 1

γd
µ̃d ˙̃µd

=−〈µe,e〉−〈(µ0−1)et,et〉−σ1(q∗1;e,e)−σ2(q∗2;et,et)

(41)

+
1
γ1
〈 ˙̂θ1, θ̃1〉Q− 1

γ1
〈θ̇1, θ̃1〉Q+σ1(q3θ̃1;e+v,e+et)

+
1
γ2
〈 ˙̂θ2, θ̃2〉Q− 1

γ2
〈θ̇2, θ̃2〉Q+σ2(q3θ̃2;et+vt,e+et)

+
1
γ3
〈 ˙̂θ3, θ̃3〉Q− 1

γ3
〈θ̇3, θ̃3〉Q+ 〈q3θ̃3g,e+et〉

+ 〈 fc,e+et〉+ 〈d,e+et〉+ 1
γd
µ̃d( ˙̂µd− µ̇d). (42)

Using condition (A2) and (10), (41) becomes

−〈µe,e〉−〈(µ0−1)et,et〉−σ1(q∗1;e,e)−σ2(q∗2;et,et)

≤−µ‖e‖2−
(
µ0−1+

k2(q∗2)

K2

)
‖et‖2−k2(q∗1)‖et‖2V .

(43)

Therefore, using (43) and adaptation laws (22.a – d), (42)
yields:

V̇ ≤−µ‖e‖2−
(
µ0−1+

k2(q∗2)

K2

)
‖et‖2−k2(q∗1)‖e‖2V

+ 〈 fc,e+et〉+ 〈d,e+et〉+ 1
γd
µ̃d(−δdµ̂d+γd‖e+et‖)

− δd

γd
µ̂dµ̃d+gdµ̃d− 1

γd
µ̇dµ̃d

+
3∑

i=1

(
− δi

γi
〈θ̂i, θ̃i〉Q+ 〈gi, θ̃i〉Q− 1

γa
〈θ̇i, θ̃i〉Q

)
. (44)

The right hand side terms of (44) satisfy the following in-
equalities, respectively:

〈 fc,e+et〉+ 〈d,e+et〉+ 1
γd
µ̃d(−δdµ̂d+γd‖e+et‖)

≤− δd

γd
µ̃2

d+εd+
δd

2γd
µd, (45.a)

− δi

γi
〈θ̂i, θ̃i〉Q+ 〈gi, θ̃i〉Q− 1

γa
〈θ̇i, θ̃i〉Q

≤− δi

γi
‖θ̃i‖2Q+εi+ξi‖θi‖Q+ δi

γi
‖θi‖2Q+

1
γi
〈θ̇i,θi〉Q,

(45.b)

− δd

γd
µ̂dµ̃d+gdµ̃d− 1

γd
µ̇dµ̃d

≤− δd

γd
µ̃2

d+εd+ξd |µd |+ δd

γd
µ2

d+
1
γd
µ̇dµd. (45.c)

Therefore, the derivative of the Lyapunov function candi-
date is bounded as follows:

V̇ ≤−µ‖e‖2−
(
µ0−1+

k2(q∗2)

K2

)
‖et‖2−k2(q∗1)‖e‖2V

− 2δd

γd
µ̃2

d−
3∑

i=1

δi

γi
‖θ̃i‖2Q+υ(t), (46)

where
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υ(t)=2εd+
δd

2γd
µd+ξd |µd |+ δd

γd
µ2

d+
1
γd
µ̇dµd

+
3∑

i=1

(
εi+ξi‖θi‖Q+ δi

γi
‖θi‖2Q+

1
γi
〈θ̇i,θi〉Q

)
. (47)

Note that υ(t) is bounded because of the assumption that
θi, θ̇i, µd, and µ̇d are bounded.

Remark 1: Since υ(t) is bounded, the solutions
for coupled nonautonomous dynamical systems (24) and
(22.a – d) are uniformly ultimately bounded. Further, if
υ(t) is sufficiently small, then it is guaranteed that ‖e‖V
and ‖et‖ are uniformly ultimately bounded within an arbi-
trarily small neighborhood of zero(7), (8).

Remark 2: The equations of ‖ fi‖Q’s and ‖ fd‖Q can be
rewritten as

‖ fi‖Q=
∥∥∥∥∥∥−
δi

γi

(
θi+

θ̇i

δi

)∥∥∥∥∥∥
Q

=
1
γi
‖−δiθi+ θ̇i‖Q

for i=1, 2, 3,

and | fd |=
∣∣∣∣∣∣−
δd

γd

(
µd+

µ̇d

δd

)∣∣∣∣∣∣=
1
γd
|−δdµd+ µ̇d |.

From ξi ≥ ‖ fi‖Q, i = 1, 2, 3, and ξd ≥ | fd |, ξi’s and ξd can
be chosen at reasonable values according to ‖ fi‖Q’s and
| fd |, respectively. Thus, υ(t) can be pushed in an arbitrar-
ily small boundedness region by making sufficiently small
εi’s, εd, δi’s, δd and sufficiently large γi’s, γd.

All the above developments are now summarized as
follows:
Theorem 1: Consider the nonlinear coupled dynamical
system (24), (13), and (22.a – d) (or (19.a – c)). Then all
signals in the closed loop system are bounded. Further-
more, both the state error and its time-derivative, (e,et),
converge asymptotically near to zero by a suitable choice
of εi, δi, γi, i=1, 2, 3, and εd, δd, γd, i.e.,

lim
t→∞‖et‖= lim

t→∞‖e‖V ≈0.

Theorem 1 implies that the basic control objective is
now achieved, i.e., all the signals in the closed loop are
bounded and the trajectory following is achieved. In ad-
dition to the state error convergence near to zero, it is
also desirable to have an adaptive control scheme to pro-
vide parameter estimation error convergence near to zero
as well, i.e., the parameters θ̂i, i = 1, 2, 3, and µ̂d con-
verge near to the true parameters θ∗i , i = 1, 2, 3, and µd,
respectively. If the parameter errors convergence is estab-
lished, the entire adaptive algorithm can be improved. To
assure this, the following additional persistency of excita-
tion condition on the reference model is required.

Using the operator Ai(·), i=1, 2, given in (25.a, b), let
F0(·), F1(·)∈L2(0,T ;Y∗) for all T >0 be given by

F0(p0)=

[
0

A(p1){e+v}+A(p2){et+vt}+ p3g

]
, (48)

F1(p0)=

[
A(p1){e+v}+A(p2){et+vt}+ p3g

0

]
, (49)

for p0 = (p1, p2, p3,rd)T ∈Q, Q
∆
=Q3×R, and let a matrices

B and D be given by

B=

[
0 0
−µ −µ0

]
, D=

[
0

fc+d

]
. (50)

Then, the coupled system (24), (13), and (22.a – d) can be
rewritten as

〈et,ϕ0〉=〈A0(t)e,ϕ0〉+〈F0(q3θ̃),ϕ0〉+〈Be,ϕ0〉+〈D,ϕ0〉,
(51.a)

〈ut,ϕ0〉= 〈A0(t)u,ϕ0〉+ 〈g0,ϕ0〉, (51.b)

〈 ˙̃θ, p0〉Q= 〈F0(γ0 p0),e〉+ 〈F1(γ0 p0),e〉
+ 〈−δθ̂+γ0‖e+et‖+γg− θ̇,q〉Q, (51.c)

e(0)= e0, u(0)= u0, θ̃(0)= θ̃0, (51.d)

where ϕ0 ∈Y , p0 = (p1, p2, p3,rd)T ∈Q, θ̃= (θ̃1, θ̃2, θ̃3, µ̃d)T ∈
Q, u= (v,vt)T , g0 = (0,q∗3g)T , γ0 p0 = (γ01 p1,γ02 p2,γ03 p3)T ,
δθ̂ = (δ1θ̂1,δ2θ̂2,δ3θ̂3,δdµ̂d), γ0 = (0,0,0,γd), γg = (γ01g1,

γ02g2,γ03g3,0), and θ̇= (θ̇1, θ̇2, θ̇3, µ̇d).
From (10) and (A1), the followings are obtained:

|〈A0ψ0,ϕ0〉|≤ k3‖ψ0‖Y‖ϕ0‖Y , (52)

|〈Bψ0,ϕ0〉| ≤ k4‖ψ0‖Y‖ϕ0‖Y , (53)

|〈F0(p0),ϕ0〉|≤ k5‖p0‖Q(‖e‖Y +‖u‖Y +‖g0‖Y )‖ϕ0‖Y ,
(54)

|〈F1(p0),ϕ0〉|≤ k5‖p0‖Q(‖e‖Y +‖u‖Y +‖g0‖Y )‖ϕ0‖Y ,
(55)

for ψ0, ϕ0 ∈Y , and where ki>0, i=3, 4, 5.
Also, note that the following is obtained:

|〈D,ϕ0〉|≤ ‖ fc+d‖ ‖ϕ0‖Y ≤ (µ̂d,max+µd,max)‖ϕ0‖Y , (56)

where ‖ fc(x, t)‖ ≤ |µ̂d(t)| ≤ µ̂d,max and ‖d(x, t)‖ ≤ µd(t) ≤
µd,max for t ≥ 0 with some positive constants µ̂d,max and
µd,max.
Definition 2: The reference model (51.b), or the triple
{A0,g0,u0}, is said to be persistently exciting if there ex-
ist positive constants τ0, δ0, c0, and ε0, such that for each
p0 ∈ Q with ‖p0‖Q = 1 and t ≥ 0 sufficiently large, there
exists t̄ ∈ [t, t+τ0] for which∥∥∥∥∥∥

∫ t̄+δ0

t̄
F0(p0) dτ

∥∥∥∥∥∥
Y∗
≥ε0+ (µ̂d,max+µd,max)

δ0

c0
. (57)

Theorem 3: If g0 ∈L∞(0,∞;Y) and u0 ∈Y, and if the refer-
ence model, (51.b) (or (13)), is persistently exciting, then
the uniform ultimate boundedness region of the parameter
estimation error vector θ̃= (θ̃1, θ̃2, θ̃3, µ̃d)∈Q can be made
arbitrarily small near to zero by a suitable choice of εi, δi,
γi, i=1, 2, 3, and εd, δd, γd, then lim

t→∞‖θ̃(0)‖Q ≈0.

Proof: In this proof, it is assumed that | · |0 ∆= ‖·‖, | · |2 ∆=
‖·‖X , ‖·‖ ∆= ‖·‖Y , and ‖·‖∗ ∆= ‖·‖Y∗ . From section 3, the strong
solution of (51.b) can be obtained by

u(t)=Φ(t,0)u(0)+
∫ t

0
Φ(t,τ)g0(τ) dt. (58)
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Now suppose that g0 ∈ L∞(0,∞;Y) and u0 ∈ Y , then u ∈
L∞(0,∞;Y) follows immediately from (58).

For t2> t1, (51.a), (52), (53), (56), and (29) imply that∥∥∥∥∥∥
∫ t2

t1

F0(q3θ̃(t)) dt

∥∥∥∥∥∥∗
≤K0|e(t2)|2+K0|e(t1)|2
+ (k3+k4)(t2− t1)1/2

{∫ t2

t1

‖e(t)‖2 dt

}1/2

+ (µ̂d,max+µd,max)(t2− t1). (59)

Assume that ‖θ(t)/γ‖Q is uniformly bounded by ρ where
θ/γ = (θ̃1/γ01, θ̃2/γ02, θ̃3/γ03, µ̃d/γd)T . Then, from (51.c),

(54), and (55) it follows that for p0 =
1
ρ

(
θ̃(t)
γ

)
∈Q

‖θ̃(t2)− θ̃(t1)‖Q = sup
|p0 |Q≤1

∣∣∣∣∣∣∣
〈∫ t2

t1

θ̃t(t) dt, p0

〉
Q

∣∣∣∣∣∣∣
≤

∫ t2

t1

sup
|p0 |Q≤1

|〈F0(γ0 p0),e(t)〉| dt

+

∫ t2

t1

sup
|p0 |Q≤1

|〈F1(γ0 p0),e(t)〉| dt

+

∫ t2

t1

sup
|p0 |Q≤1

|〈−δθ̂+γ0|e+et |0+γg− θ̇, p0〉Q| dt

≤2k5

∫ t2

t1

‖e(t)‖2 dt+2k5(‖u(t)‖L∞(0,∞;Y)

+‖g0‖L∞(0,∞;Y))(t2− t1)1/2

{∫ t2

t1

‖e(t)‖2 dt

}1/2

+
1
ρ

∫ t2

t1

∣∣∣〈−δθ̂+γ0|e+et |0+γg− θ̇, θ̃/γ〉Q
∣∣∣ dt. (60)

Assume that lim
t→∞‖θ̃(t)‖Q � 0, and let {tk}∞k=1 be an in-

creasing sequence of positive numbers for which lim
k→∞

tk =

∞ and

‖q3θ̃(tk)‖Q ≥ c0, k=1, 2, · · · .
Assume further that the reference model (51.b), or (13),
is persistently exciting, and for each k = 1, 2, · · ·, let t̄k ∈
[tk, tk+τ0] be such that∥∥∥∥∥∥

∫ t̄k+δ0

t̄k

F0

(
q3θ̃(tk)

|q3θ̃(tk)|Q

)
dt

∥∥∥∥∥∥∗ ≥ε0+ (µ̂d,max+µd,max)
δ0

c0
.

(61)

Then, using (59) and (60), the following is derived:

0< c0ε0+ (µ̂d,max+µd,max)δ0

= c0

(
ε0+ (µ̂d,max+µd,max)

δ0

c0

)

≤ |q3θ̃(tk)|Q
∥∥∥∥∥∥
∫ t̄k+δ0

t̄k

F0

(
q3θ̃(tk)

|q3θ̃(tk)|Q

)
dt

∥∥∥∥∥∥∗
=

∥∥∥∥∥∥
∫ t̄k+δ0

t̄k

F0(q3θ̃(tk)) dt

∥∥∥∥∥∥∗

≤
∥∥∥∥∥∥
∫ t̄k+δ0

t̄k

F0(q3θ̃(t)) dt

∥∥∥∥∥∥∗
+

∥∥∥∥∥∥
∫ t̄k+δ0

t̄k

F0(q3θ̃(tk)−q3θ̃(t)) dt

∥∥∥∥∥∥∗
≤K0|e(t̄k+δ0)|2

+K0|e(t̄k)|2+ (k3+k4)
√
δ0

{∫ t̄k+δ0

t̄k

‖e(t)‖2 dt

}1/2

+ (µ̂d,max+µd,max)δ0

+k5

[
2k5

∫ t̄k+τ0+δ0

t̄k

‖e(t)‖2 dt

+2k5
(‖u(t)‖L∞(0,∞;Y)+‖g0‖L∞(0,∞;Y)

)

× √
τ0+δ0

{∫ t̄k+τ0+δ0

t̄k

‖e(t)‖2 dt

}1/2

+
1
ρ

∫ t̄k+τ0+δ0

t̄k

∣∣∣〈−δθ̂+γ0|e+et |0+γg− θ̇, θ̃/γ〉Q
∣∣∣ dt

]

×
 √δ0

{∫ t̄k+δ0

t̄k

‖e(t)‖2 dt

}1/2

+δ0× (‖u(t)‖L∞(0,∞;Y)+‖g0‖L∞(0,∞;Y)
) . (62)

From the adaptive laws (22.a – c) and (45.b) we can have

〈−δθ̂+γg− θ̇, θ̃/γ〉Q ≤υ′(t),

where υ′(t)=
3∑

i=1

(
εi+ξi‖θi‖Q+ δi

γi
‖θi‖2Q+

1
γ
〈θ̇i,θi〉Q

)

and υ′(t) can be made arbitrary small near to zero by mak-
ing sufficiently small εi’s, δi’s, and sufficiently large γi’s.

Now, from Appendix A, for any L > 0,

lim
t→∞

∫ t+L

t
‖e(s)‖2 ds ≈ 0. Therefore, letting k → ∞ in

(62) and sufficiently small εi’s, εd, δi’s, δd and sufficiently
large γi’s, γd, Theorem 1 and Appendix A imply that

0< c2ε0

≤K0 lim
k→∞
|e(t̄k+δ0)|2+K0 lim

k→∞
|e(t̄k)|2

+ (k3+k4)
√
δ0

{
lim
k→∞

∫ t̄k+δ0

t̄k

‖e(t)‖2 dt

}1/2

+k5

[
2k5 lim

k→∞

∫ t̄k+τ0+δ0

t̄k

‖e(t)‖2 dt

+2k5
(‖u(t)‖L∞(0,∞;Y)+‖g0‖L∞(0,∞;Y)

)

× √
τ0+δ0

{
lim
k→∞

∫ t̄k+τ0+δ0

t̄k

‖e(t)‖2 dt

}1/2

+
1
ρ

lim
k→∞

∫ t̄k+τ0+δ0

t̄k

∣∣∣〈−δθ̂+γ0|e+et |0+γg− θ̇, θ̃/γ〉Q
∣∣∣ dt

]

×
 √δ0

{
lim
k→∞

∫ t̄k+δ0

t̄k

‖e(t)‖2 dt

}1/2

+δ0
(‖u(t)‖L∞(0,∞;Y)+‖g0‖L∞(0,∞;Y)

)
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≈0,

which is a contradiction, and the theorem is proved.

5. Conclusions

A robust MRAC algorithm for a cantilevered flexible
structure with unknown spatiotemporally varying coeffi-
cients and disturbance has been investigated in this paper.
The spatiotemporally varying coefficients were assumed
to be uniformly bounded with uniformly bounded deriva-
tives, but they were allowed to vary arbitrarily fast. The
disturbance was also assumed to be uniformly bounded.
Under the unknown plant parameters and external dis-
turbances, the robust MRAC law proposed assures the
closed loop system to track a desired signal that comes
from the reference model. Because the derivative of a
Lyapunov function candidate was not negative semidefi-
nite, only uniform ultimate boundedness would have been
concluded. However, further analysis in this paper has
shown that the state error, which remains in the deriva-
tive of the Lyapunov function candidate, converges near
to zero. Also, with the additional persistence of excita-
tion condition, the algorithm guaranteed the convergence
of the adjustable controller parameters near to their nom-
inal values. The feasibility of using a finite number of
sensors and actuators is under investigation.
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Appendix A: Tracking Error Convergence

From (41), (46), and (47), there exists a positive con-
stant β0 such that the following holds:

V̇ ≤−〈µe,e〉−〈(µ0−1)et,et〉−σ1(q∗1;e,e)−σ2(q∗2;et,et)

− 2δd

γd
µ̃2

d−
3∑

i=1

δi

γi
‖θ̃i‖2Q+υ(t)

≤−µ‖e‖2− (µ0−1)‖et‖2−k2(q∗1)‖e‖2V −k2(q∗2)‖et‖2V +υ(t)

≤−β0‖e‖2Y +υ(t), (A.1)

where

υ(t)=2εd+
δd

2γd
µd+ξd |µd |+ δd

γd
µ2

d+
1
γd
〈µ̇d,µd〉Q

+
3∑

i=1

(
εi+ξi‖θi‖Q+ δi

γi
‖θi‖2Q+

1
γi
〈θ̇i,θi〉Q

)
.

υ(t) can be made arbitrary small near to zero by making
sufficiently small εi’s, εd, δi’s, δd and sufficiently large
γi’s, γd. Thus, from Theorem 1 the following is satisfied:

lim
t→∞

∫ t+L

t
‖e(s)‖2Y ds≈0 for any L>0.
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